Revision of the genus Spinosipella (Bivalvia: Verticordiidae), with descriptions of two new species from Brazil

Luiz Ricardo L. Simone
Carlo M. Cumhal ${ }^{1}$
Museu de Zoologia da Ctiversidatle de
São Paulo
Caiva Postal 42494
04299-970 Säo Paulo, BRAZII,
Irsimone@usp.br
${ }^{1}$ carlomagenta@gmail.com

Abstract

A revision of the deep-water verticordiid genus Spinosipella is prorided. based on conchological and anatomical characters. The genus is considered distinct from Verticorlia (of which it was considered a subgenus) based on the strong ribs, prickly surface, reduction of lunula, relative large size, weak spiral valve shape, and other characters. The following species are considered in the genus: (1) Spinosipella agnes new species, ranging from Florida, USA, to Rio de Janeiro, Brazil, and also including the Porcupine Abyssal Plain in the North Atlantic; (2) S. tinga new species occurring from Rio de Janeiro to Rio Grande do Sul. Brazil: (3) S. acuticostata (Philippi, 1544), a Pliocene fossil from southem Italy; (4) S. deshayesiana (Fischer, 1562), from south and central Indo-Pacific (S. cricia Hedlex: 1911, the tope species of the genus, was revealed to be a new smonym of S. deshayesiana); and (5) S. costeminens Poutiers, 1951), from the tropical west Pacific. The five species differ mainl in conchological details of the number and size of ribs, of the prickty sculpture, shape of the shell, of the hinge and the degree of convexits: Anatomical description is also provided for the two Pacific species, which differ among themselves mainly by the size of the pair of renal folds. From the standpoint of anatomical characters, the more significant are: the wide lithodesma: the elongation of the auricles, crossing the roof of pallial carity; a tall digital fold in posterior region of supraseptal chamber: the low but wide palps: the muscular, gizzard-like stomach; the complete separation of both constituents of the hermaphroditic gonad (a ventro-posterior testicle and a centro-dorsal ovary), and a complete fusion of the tisceral qanglia.

Additional Keywords: Mollusca, Anomalodesmata, Septibranchia

INTRODUCTIOA

The Terticordiidae is a family of septiloranch bivalves comprised of camivorous and mostly deep-water species. They are tupicall small (less than 10 mm) but some species reach $30-10 \mathrm{~mm}$. Thev are mostly radialls sculptured and usually have nacreous imer surface.

The gemus Spinosipella Iredale, 1930 (type Verticordia ericia lledley, 191 I , by original designation) is usually considered a subgenus of Verticordia Sowerby; 1S44 (e.g., Thiele, 1934; Moore, 1969: Abbott and Dance, 195.3). The genus encompasses species with shell having prickly outer surface, lumule very reduced, thick walls, and generally larger size (up to 30 mm). 13n addition to the tipe species, S. ericia, three other species are currently included in this gemus, S. acuticostata (Philippi, 1844), from Atlantic and Mediterranean (middle Tertiarv to Recent); S. deshayesiana (P. Fischer, IS62a) and S. costeminens (Poutiers, 1951), from Indo-Pacific. Some authors have considered S. deshayesiana as an IndoPacific occurrence of S. acuticostata (e.g., Nobre, 19.36; Crozier. 1966; Rosenberg, 2005).
Examination of worldwide samples, with an emphasis on the Western Athantic, showed that two species actually exist in the Atlantic. Both are separate from the fossil S acuticostata. In addition, it was possible to reorganize the Indo-Pacific species, mainly because of the abundant material deposited at the Muséum national d'Histoire naturelle, Paris (MNHN), which results from several expeditions. A retision of the taxonomy' and a necessary re-definition of taxa are provided in this paper, as part of a larger project revising Westem Atlantic mollusk taxonomy, based on morphology.

MATERIALS AND MIETHODS

A detailed list of the material examined follows each species description. Specimens generally helong to museum collections. Most material consists of shells exam ined under a stereomicroscope. Some few Pacific samples have presered soft parts in 70% ETOH They were dissected by standard techniques, monder stereomicroscope, with specimen immerse in alcohol. All dis secting steps were digitally photographed: all drawings were made with the aid of a camera lucida. In the case of the material examined of Spinosipella deshayesiana and
S. costeminens, as the quantity of examined lots is very large, mainly thorugh countesy of stalf at MNHN (Paris), the list only contains the commery and the prantity of specimens. The full list of examined lots of these specimens is being published elsewhere, in a complementary paper (Simone and Cumha, in press).

Abbreviations used in figures are: an, anterior adducfor muscle; an, anus; au, auricle: bs, byssus; by, byssal gland or furrow; ce, cerebral commissure; ce, cerebral ganglion; $\mathfrak{c j}$, comnective tissne; cm, circular muscle layer; co, cerebro-xisceral connective: er, crustacean inside stomach; cv, ctenidial (elferent) vein; dd, ducts to digestive diverticulae; dg, digestive diverticula; es, esophagas: fa, foot aperture of mantle; fm, posterior loot retractor muscle; fir, anterior foot refractor muscle; ft, foot; ga, genital aperture; ge, gastric epithelium; gi, gill; he, hemocoel; ic, infra-septal chamber, in, intestine; ki, kidney; lm, lateral muscle; lo, longitudinal muscle laver; It, lithodesma: mb, mantle borler; mf, lused mantle edge; mg , radial mantle gland; mo, mouth; mp, mantle tentacle; ms, mantle muscles of incurrent siphon; mt, mantle; mo, muscular tissue; ne, neplıopore; nv, nerve; oy, ovary: pa, posterior adductor muscle; pe, pericardium; pg, pedal ganglia; pi, papilla of excurrent chamber rool: pom, pallial muscles; pp, palp; rs, renal fold; rt, rectum; se, excurrent siphon; sh, shell; si, incurrent siphon; sm, septum muscle; sp, septum; ss, style sac; st, stomach; su, supra-septal chamber; sy, crystalline style; ts, testis: um, shell mmbo; ve, ventricle; vg, viscerat ganglia; vm, visceral mass.

Abbreviations of institutions: AMS, Austratian M11semm at Sydney, Australia; EGC. Emilio Garcia collection; FMNII, Florida Musemm of Natural History, Florida. USA; HGLC, Harry G. Lee collection; INTEMAR-MHNMC, project of Museo de Ilistoria Natural Marina de Colombia; M1HNMC, Museo de Historia Natural Marina de Colombia (Programa de Biodiversidad y Ecosistemas Marinos); MNHN, Mıséum national dTlistoire Daturelle, Paris, France; MZSP, Museu de Zoologia da Universidade de São Paılo, Brazil; RLPC, Rafael La Pena collection (Universitá di Bali, 1taly).

Specimens from other serticordiid species were also examined for comparative purposes. This material includes:

Haliris fischeriana Dall, 1SSI:
UNITED STATES OF AMERICA. Florida, Fowey Light, I30 10 depth, M/SP' 1993.1. 2 valves (R. V. Eulis sta. 1S4). BRAZILL. Ris de Janeiro; $22^{\circ} 34^{\prime} \mathrm{S}, 40^{\circ} 29^{\prime} \mathrm{W}, 213 \mathrm{~m}$ deptli, MZSP 1st51, I valve (on Laminarias, IV. Besnard col, est. IX) Rio Grande do Sul; $30^{\circ}+2^{\prime} \mathrm{S}, 49^{\circ} 03^{\prime} \mathrm{IV}$, 152-156 on dopth, MZSP 15750, 5 valves (2] Ang. 1972); $32^{\circ} 55^{\prime} 5,50.34^{\prime}$ IV, 99 m depth, tTFRC 1685, I shed and I(values (stal. 45, fisi39 dredge, 0) $4 / \mathrm{jv} / 1998$).

Euciroas ap

GEDIP'sta. 1856,21 Ang. 1972), MADAGASCAR. 600 m depth, EGC 23588, I shell. MOZANBIQUE. off Morondava, Cliamel Madagascar, 600-800 m depth, MZSP 61816, 3 shells (Trawled by locad fisherman, May 2002).

Euciroa elcgantissima (Dall, 1SSI).

UNITED STATES OF AMERICA. Florida, $27^{\circ} 16^{\prime} \mathrm{N}$, $84^{\circ} 58.99^{\prime}$ IV, 457 m depth. EGC 13005. 6 valves (dredged, R/V Pelican), $24^{\circ} 09^{\prime} \mathrm{N} .82^{\circ} 31^{\prime} \mathrm{W}$, about 64.3 km off Southwest of Key West, 549 m depth, EGC 23685, 1 shell (R/V Ohegon ll col, crnise \#45, sta. 13362); Monroe Co. Straits of Florida, 549 m depth, FMNH 209892, 1 shell (Frank Lyman col.), $24^{\circ} 15.1^{\prime} \mathrm{N}, 82^{\circ} 11.71^{\prime} \mathrm{W}, 525 \mathrm{~m}$ depth, FMNIf 164794,1 value (G.II. Burgess, et. al. GIIB-90-S, 23 Apr. 1990). COLOMBIA. Santa Marta, Cerro de Punta Betin, A.A. 1016. (NHNMC INVEMAR), MHNMC 2752, 3 values, MHNMC 2781,1 valve

SYSTEMIATICS

Gemus Spinosipclla Iredale, 1930
Iphigenia Costa, 1550: 395 (type species by original designation Ilippagus acuticostatus Philippi. 1844) (pre-occupied) (nom Schumacher, 1S17).
Spinosipella Iredale, 1930: 358 (type species by original designation Tenticordia ericia Iledley. 1911); Poutier and Bernard, 1995: 142.
Terticordia (Spinosipella): Thele, 1934: 142S; Noore, 1969: $\$ 55$.

Diagnosis: Shell relatively large, obese, with spiral valves. Surface prickly inchading on radial ribs. Radial rils tall, extending beyond shell margin. Limula very reduced.

Description: Shell: From small to medium size (up to .30 mm). Width/length ratio usually about 1. Color opacpue-whitish. Sculphured by strong and tall radial, weakly cursed ribs, tiangular in section, bulging weakly berond shell edoe, alternating in both vakes. Surface spiny, constituted by uniform sized, very small bulbs, covering ahnost entire outer surface. Limula very reduceed. Umbo projected, weakly spiral. Right rake with single tall, pointed and broad cardinal looth. Left valve with low, broad rooth (posterior to iooth of right valse), and plane cardinal concarity as socket of tooth of right valve. Ligament just anterior to anterior hinge tooth, inserted at some distance from median line, in approximately middle way between hinge medial edge and umbonal cavity (Figures 10, 12). Lithodesma wide, cmre, ocenpring abont 0.25 of hinge length, possessing a pair of lateral ligamental articnlations (Figures 93, 96-105).
List of lncluded Taxa: S acuticostata (Philippi, 18.14): S. agnes mew species: S. costominens (Pontiers, 1981): S. deshayesiana (1 '. Fischer, IS62a) [$[$ S. cricia (11ronley, 1911)]:S. tinge ины species.

Spinosipe latagues new species
(Figures 1] 8, 27-29, 31, 55)
Vatiendian arntimetatu- Nobre 1936: 303-301; 1935: 769T70; Aboot, 1974: 5 (i3; Abott amd Dance 1953: 375

Figures 1-14. Spinosipella agnes new species. Shells. 1-10. Holotype (length 23.2 mm) shell. 1. Left valve, outer view. 2. Right valve. 3. Right valve, inner view; 4. Left valve, imer view. 5. Dorsal view. 6. Posterior view. 7. Anterior view. S. Detail of shell surface in SEXI, middle region of right valve. 9. Detail of inter-umbonal region, dorsal siew. 10. Hinge, ventral-imer view. 11-14. Paratypes. 11. 1IGLC. from Florida, left valve, outer view; 11 mm . 12. Same, ventral view, valves opened for showing whole siew of hinge 13-14. EGC 17419. from Colombia, onter view of riglit and left valves: 15 mm .

(fig.) , van Aartsen, 1992: 45; Poppe and Goto. 1993: 139: PMcLean and Geiger, 1995: 27, 109 (fig); Salas, 1996: 46 : Rosenberg. 2005 (part) (non Philippi, 1544).
Verticordia deshayesiam.-Rosenberg, 2005 (part) (in symonver) (non Fischer, 1SG2a).
Type Material: HOLOTYPE, MZSP 36917; BRAZH. Rio de Janeiro, ofl Cabo Frio, $23^{\circ} 41^{\prime} \mathrm{S}, 41^{\circ} 03^{\prime} \mathrm{W}, ~ 750-$ 500 m depth (o.t.). PARATYPES. UNITED STATES OF AMERJCA. Florida: Off Cape Camaveral, 903 ; depth, USN II 64039, 1 right value: SE of Sand Ker, AMN11 24845 , 4 shells (Jan. 1970. J. M. Biju Collection), AMNII 245459, 2 shells (Jm. 1970, J. M Bijur Collection): Monroe Countr, S.E. Sand Ker, 270 m depth. HCLC, - shells, FMiNH 154594, I specimen (dredged, Jerry Phelps col., Jun. 1970): 120.6 kmeast of Dintona, $29^{\circ} 17^{\prime} \mathrm{N}, 79^{\circ}-7^{\prime} \mathrm{W}, ~ S 75 \mathrm{~m}$ deptli, USNM S10590. 1 shell and 1 left valve ($\mathrm{R} 八^{\top}$. Oregon, sta. 6690, 9 May 1967): Marquesas Kcy, $24^{\circ} 15^{\prime} \mathrm{N}, ~ 52^{\circ} 13^{\prime} \mathrm{W}, 27 \mathrm{~S}$ 419 in depth. 1 left, USNMI Sl0SS9, 1 right valve (R/N. Blake, A. Agassiz 1577-187S). COLOMB1A. ofl Cartagena, $10^{\circ} 25^{\prime} \mathrm{N}, 75^{\circ} 42^{\prime} 3,280 \mathrm{~m}, \mathrm{MHNMC} 2203$, I valse (E-47), $10^{\circ} 31^{\prime} \mathrm{N}, 75^{\circ} 37^{\prime} 11,309 \mathrm{~m}, ~$ NHINDC 2-75, 1 valve (E-141), Palomino, Dibulla, $11^{\circ} 29^{\prime} \mathrm{N}$, $73^{\circ} 2^{-1}$ W, $476 \mathrm{~m}, ~ M 1$ INMC 3104 , 4 valves, ($\mathbf{E}-21$), Cuajira, Bahía Honda, $12^{\circ} 31^{\prime} \mathrm{N}, 72^{\circ} \mathrm{S}^{\prime} \mathrm{W}, 452 \mathrm{~m}$, , IHNMC 2943,1 shell (E-12), Guajira Peninsula, $12^{\circ} 30^{\prime}$ N, $72^{\circ} 05^{\circ}$ IV. 470 m depth, EGC 17419.1 shell; Cabo de la Vela, $122^{\circ} 19^{\prime}$ N, $22^{\circ} 42^{\prime} \mathrm{W}, 464 \mathrm{~m}, ~ М Н N M C ~ 3057, ~ 2 ~ v a l s e s ~$ (E-19), Islas del Rosario, $10^{\circ} 10^{\prime} \mathrm{N}, 76^{\circ} 0 \mathrm{~J}^{\prime} \mathrm{V}, 510 \mathrm{~m}$. MHNMC 220S, 2 valves (E-78). BRAZILL Rio Crande do Norte; 206 m depth, MZSP S4627, I shell (Sta. D-22. 10 Vor: 2001); Pernambuco: 690 m depth, MZSP S 4625 , 1 shell (Sta. D-11).
Diagnosis: Shell with 15-17 radial ribs; smooth preumbonal region wide (about 0.25 of shed length): prickly sculpture chaotically organized. Width/lengtl, ratio in each ralve approximately 0.57. Posterior cardinal tooth of left valve hinge well developed; main cardinal tooth of left valve relatively low and cylindrical; main cardinal tooth of right valve tall (about 0.2 of valse widtli) and pointed.
Description: SHELL: Up to 22 mm, equivalve inflated, each valve symmetrically and weakly spiral (1 whorl) (Figures 7. 9). Color white. Degree of convexity (widtl/ length in each valve approximately 0.57 . Outer surface spiny: oparque lorming an irregular mosaic (Figures S, 9). Umbones located in middle region of dorsal surlace, spiral, high, divergent. separated from each other at about $1 / 3$ of shell width (Figures 1-4, 1.3-1S, 55). Sculptured by strong, uniform, arched, radial ribs, from 15 to 17 in eads valve. Posterior edge about twice as wide as anterior edge. Between umbo and anterior edge a concavity bearing transversal ribs, slightly wider than ribs of remaining region (Figures 5. 7. 9). Pre-umbonal region smooth, narrow, 0.2 of shell length (Figures 5, 7, 9). Anterior, ventral and posterior edges forming zigzag (Figures 3, 4); tips of this zigzag coinciding with tips of each rib, tips encasing in concavity of opposite valve (Figures 1, 2. 11.

13-16). Thater surface iriclescent, whitish, glossy; including hinge (Figures $3,4,10,12,17,18$). Hinge with a large cardinal tooth in right valse, stubby, tall (about 20% of value width), broadly pointed. weakly corved forwards (Figures 3, 10, I2, 1S), circular in section; correspondent socket in left value shallow, restrict to dorsal surface; this socket banked by small tooth in each side, anterior smaller and lower than posterior (Figures $4,10,12,17$, 27-2s [arrow]). Ligament just anterior to anterior hinge tooth, inserted at some distance from median line (Figures 10,12), approximately midway between hinge medial edge and umbonal canty: Scars of adductor muscles shallow (Figures 3, 4, 17, 15, 25); anterior scar elliptical (longer dorso-ventrally), located close to anterior edge, area abont $1 / 15$ of inner surlace of valse; posterior scar circular, about 0.33 larger than anterior scar, located close to posterior shell edge. Pallial line continnous, located at wide distance from shell edge, about 0.33 of distance hetween ventral and umbonal height.

Measurements (Length, height, width, in mm): Holotype: 20.1 by 23.2 by 22.2; EGC 17419: 15.6 by 15.5 by 15.5.

Geographic Distribution: Florida, USA, to Rin de Janeiro, Brazil.

Habitat: Mudly bottoms, 270-900 m.
Material Examined: Types. BARBADOS. USNM 63200, 3 valves (Blake Coll., sta. 100). CUBA. Havana; Gulf of Nexico, 419 m depth, USNM 63201, 3 right, 4 left valves (Blake Coll., sta. 5). PORTUGAL. Porcupine Bank; USNMI 63204,2 right vatres (Jelfrers Coll., Porcupine Exp. 1870). UNITED STATES OF AMERICA. Florida; Gulf ol Nexico, off Cape San Blas, 309 m depth, USNM 323571, J left, 1 right salve (sta. $24(0)$); 120.6 km east of Dartona, $29^{\circ} 17^{\prime}$ N. $79^{\circ} 27^{\prime} \mathrm{W} .878$ mi depth. USNM S10590, 1 shell and 1 left valve. BRAZIL. Espirito Santo (RA M vRioN-D (fliesNe MD55, May 19S7); off Conceição da Barra, $18^{\circ} 59^{\prime} \mathrm{S}, 37^{\circ} 50^{\prime}$ W1, 637 m depth, MNILN, J0 valses (sta. CB66); ofl Pontal da Regência, $19^{\circ} 34^{\prime} \mathrm{S}, 35^{\circ} 55^{\prime} \mathrm{W}, 340-360 \mathrm{~m}$ deptls. MNIIN I value (sta. CB92).

Etymology: The specific epithet refers from the Greek agnes, meaning pure, an allusion to the whitish, color of the shell.

Remarks: The above listed examined material that was not designed as types are normally lots with eroded specimens, or sometimes they have abemant daracters. This is the case of the MNIAN material collected off north cuast of Espinto Santo, Brazil. They actually are free values that resemble the Pacific species Spinisopella costrminens, in having a weakly larger radial thread between middle and posterior thirds, and in lacking anterior tooth in linge. As they can represent another species, they are not designed as types; on the other hand. the material is not sulficiently well-preserved for funther analysis. Because of they can only represent an extreme
of variation of the S agnes, they are listed as additional examined material of this species.

Spinosipella tinga new species
(Figures 19-26, 30, 32)
Verticordia acuticostata: Marini, 1974: 242, figs. 5, 6 (non Philippi, 1844).
Terticordia (Haliris) acuticostata: Rios, 1975: 262, pl. S5., fig 1261; 1985: 282, pl. 99, fig. 1391; 1994: 304, pl. 104, figs. 1489 (non Philippi, 1544).
Verticordia deshayesiana: Marini, 1974: 242 (in stmomeme); Rios, 1975: 262; 1955: 2S2; 1994: 304 (in sinonymy); Rosenberg, 2005 (part) (in synomymy) (non Fischer, is62a).

Diagnosis: Shell with 17-IS radial ribs; smooth preumbonal region rery narrow (less that $1 / s$ of shell length). Width/length ratio in each valve approximately 0.47. Posterior cardinal tooth of left valve hinge absent: main cardinal tooth of left valve low and cylindrical: main cardinal tooth of right value lower (about 10% of valve width $)$ and rounded.

Description: Shell: Up to 13 mm, equivalse, inflated, both valves weally spiral (1 whod) (Figures 21, $22)$. Color white. Degree of convexity (width/length) in eacll valve approximately 0.47. Umbones located in middle region of dorsal surface (Figures 19, 20, 23, 24); umbones weakty spiraled, somewhat high, divergent, separated from each other. Sculpture of strong, uniform, arched, radial ribs, $17-18$ in each vake. Outer surface opaque, covered by a mosaic of small, blunt, loosely aligned spines parallel to radial rihs (Figure 32). Anterior edge almost same size as posterior edge. A concarity bearing transsersal ribs of same width as remaining ribs between umbo and posterior edge (Figures 21, 22, 30). Anterior, ventral, and posterior edges romeded, tips of rilos prominent (Figures 19, 20, 23, 24), fitting witl concavity in opposite value. Imer surface indescent, whitish, glossy inchoding hinge. Hinge with a somewhat large cardinal tooth in right valve (Figures 20, 25): cardinal tooth stubbs, tip romeded, flat in cross-section, tooth length about 10% of valve width; correspondent socket in left valve shallow, restricted to dorsal surface; this socket thanked by small, low, posterior tooth (no anterior tooth) (Figures 24, 26). Ligament just anterior to anterior linge tooth, inserted at some distance from midline, approximately midway between hinge medial edge and umbonal canvity: Scars of ialductor museles shallow (Figures 20, 24): "anterior scar elliptical (longer dorso-ventrally), located close to anterior edge, area about $1 / 15$ of imner surface of valve; posterior scar circular, ahont $1 / 3$ larger than anterior scan: located close to posterior shell edge. Pallial line with a very woak pallial simus, located at wide distance from sheill edge, about $1 / 3$ of distance between ventral and monbonal height.

Neasurements (respectively length, height, width, in mm): 1 Iolotype: $16.9 \times 15.3 \times 9.6$ (single valve): M/SP 15752: Paratype \#1, S.6 $\times 5.6 \times 4.1$ (1 valve):

Paratype \#2, $11.9 \times 11.4 \times 5.4$ (I valve); MZSP I $8753: 9.5$ $\times 9.6 \times 4.8$ (1 valve) .

Type Material: Holotype, MZSP 19345, I valve, from type locality ($\mathrm{R} / \mathrm{N}^{\mathrm{T}} \mathrm{W}$. Besciard, GEPID Est. 458,9 Dec. 1968. Paratıpes, Rio de Janeiro, Cabo de São Tomé, $31^{\circ} 0 S^{\prime} \mathrm{S}, 49^{\circ} 31^{\prime} \mathrm{W}^{\prime}, 182-253 \mathrm{~m}, 1$ valve, MZSP 18752
 $\mathrm{S}, 40^{\circ} 29^{\prime} 11,213 \mathrm{~m}, 1$ valve NZSP $18753 ;\left(\mathrm{R} \wedge^{\top} \mathrm{II}\right.$. Besnard, st. IX. 11 Feb. 1969), 100 m, 2 valves, MORG 18085 (R/\ Alairante Saldanha, Mar. 1972), off Solidão, $240 \mathrm{~m}, 2$ valves, MORC, 31sss ($\mathrm{R} / \mathrm{N}^{\gamma}$ Atlintico Sul, Exp. Coltro, 14 Oct.1993).
Type Locality: BRAZIL. Rio Grande do Sul, off Albardão, $33^{\circ} 29^{\prime} \mathrm{S}, 50^{\circ} 44^{\prime} \mathrm{W}, ~ 200 \mathrm{~m}$, muddy bottom.
Geographic Distribution: Brazil, from Rio de Janeiro to Rio Grande do Sul.

Etymology: The specific epithet refers to the color white of the shell, from the Tupy language: tinga.

Spinosipella acuticostata (Philippi, 1844)
(Figures 33-40)
Hippagus acuticostatus Philippi, 1s+4: 42 (p]. 14, fig. 19) [fossil in Lamati valley, Calabria, Italy].
Verticordia acuticostata: Micali and Villani, 1991: 353.
Spinusipella acuticostatn: Poutiers and Bemard, 1995: 143, 155.

Diagnosis: Shell with 12-13 radial ribs; pre-umbonal region narrow, smooth; posterior cardinal tooth of left valse hinge shallow or absent; main cardinal tooth of left wave longer and llat (Figures 35, 40); main cardinal tooth of right valve shallower (Figures 34, 37) (about 10% of value width).

Description: SHELL: Up to 24 mm : width/length ratio approximately 1 (Figures 36-35) to 1.5 (Figures 39, 40). Degree of convexity (widthi/length) in eadh valve approximately 0.55 . Outer surface spin: opaque, spines forming radiatly atigned mosaic parallel to ribs (Figures 36, 38, 39). Sculpture of strong, uniform, arched, radial ribs, 12-13 in each valve. Posterior edge about twice as broad as anterior edge. A concavity bearing transsersal ribs weakly broader than ribs of remaining region between momo and anterior edge (Figures 35, 39): pre-umbonal region narrow, smoooth (Figure 33), about 10% of shell length. Anterior ventral and posterior edges forming zigzag (Figures 35, 37, 40). Hinge with a large eardinal tooth in right valse, stubby, tall babout 10% of valse width), broadly pointed, weakly curved anteriorly (Figures 34, 37), circular in section; correspondent socket in left valve shallow, restricted to dorsal surface; this socket sometimes lanked by small tooth in each side, anterior absent or very weak (Figures 35. 40).
Measurements (respectively lenght, height, width, in mom): RLJC \#1: $11.4 \times 14.5 \times 6.6$ (valve): \#2: $10.0 \times$ 9.5×4.7 (ralve)

Geographic Distributions: Vediterranean. Plincene fossil from south Italy (Calahria and Sicily).

Figures 30-17. Spinosipella species. Shells. 30. S tinga, Itolotype, left valve, dorsal tiew, 31. S. agnes, Puratype INV-A1OL 2943. from Colombia, a specimen of equivalent size of IIolotype of S tinga for showing major differences (compare with Figure 30), dorsal tiew: 17.0 mm : note higher convexity, fewer, taller and more spaced ribs. $\mathbf{3 2}$. 5 tinga, left valve, SEM of I Iolotype, showing prickly sculpture .33-10. S. acuticostata. 33-3S. Plucene fossil from Nessinat, Italy, USNM 63202. 33, Specimen 2, dorsal-slightly anterior siew: 34. Specimen 3, right valve, detail of hinge. 35-36. Specimen I, left valve, inner and outer vicws: 13.5 mm . 37 - 38 . Specimen 2. right valie inner and outer views, hinge loroken; $12.2 \mathrm{~mm} .39-\mathbf{4 0}$. RLPC, from Rometta, Italy, left valve, specimen with lomg shape: $19.0 \mathrm{~mm} .41-47$. S. deshayesiana. $41-43$. Paratype 1 of S ericia AIs 03206%, left value imner. onter and dorsal views: 3.5 mm. 44. Paratype 2, right valve inner view: 2.6 mm . 45 Type specimen of S japonica ANSP 49639 , right valve; $5.2 \mathrm{~mm} 46-47$. A.NSP 292956 (from India), right valve, outer and inner views; 10.5 mm .

Paleohabitat: Middle and upper Pliocene beds of bathyal environments.
Material Examined: ITALY'. Sicily, Messina, $38^{\circ} 11^{\prime}$ N, $15^{\circ} 34^{\prime}$ E, Seguenza, USNM 6.3202, 2 left, 2 right valves. Middle Pliocene outcrops at Rometta, 4 valves, RLPC.

Spinosipella deshayesiana (Fischer, 1862)
(Figures 41-54, 66, 67, 72-82, 93-102)
Verticordia Deshayesiana Físcher, 1862a: 35-36 (pl. 5, fig. 1011) [China Sea].

Verticordia japonica A. Adams, 1862: 224.
Verticordia ericia Hedley, 1911: 96; Prezant, 1998: 421 (fig. 9.16A).

Spinosipella deshayesiana.-Poutiers and Bernard, 1995: 110$112,143,159,161$ (figs. T-9).
Spinisopellar cricia-Poutiers and Bemard, 1995: 143, 159.
Verticordia acuticostata.-McLean and Geiger, 1998: 109 (non Philippi, 1844).

Diagnosis: Shell with 16-19 radial ribs uniformly distributed, closely packed; pre-mmbonal region narrow, smooth. Each rib bearing well-developed crests with small, prickly gramules. Posterior cardinal tooth of left valve hinge absent; main cardinal tooth of left valve low and llat, with insertion of anterior valve edge approsimately in middle region of this tooth: main cardinal tooth of right valve high (about 10% of valse width) and pointed.
Description: Shell: Up to 18 mm . Color white. Degree of convexity (width/length) in each value approximately 0.57 . Outer surlace spiny, spines organized somewhat radially, parallel to ribs: each rib with welldeveloped crests with small, prickly granules 〈Figures 42, 45, 46. 45-54). Sculpture of strong, uniform, arched, radial ribs, 16-19 in each value (Figures 42, 45, 46, 50), somewhat closely packed. Posterior edge about twice broader than anterior edge. A concavity bearing transversal ribs similar to rilss of remaining region present between umbo and anterior edge (Figures 43, 53); preumbonal region narrow, smooth, about 10% of shell length (Figures 43, 53). Anterior, ventral, and posterior edges forming zigzag (Figures 42, 44, 47, 50, 51, 59, 67, 100), with tips projected, longer, and narrower. Hinge with a large cardinal tooth in right valve, stubloy, tall (about 10% of valve width), broadly pointed, sonewhat flat (Figures 44, 47, 51, 59, 67); correspondent socket in left valve shallow, restrict to dorsal surface; this socket flanked by small posterior ton th, with insertion of anterior valve edge approximately in middle region of this tonth (Figures 41,50), anterior tooth alsent (Figures 41, 50)

Lithonesma (Figures 93, 96-99): Saddle-shaped, hemi-cytindrical. Dorsal surface concave (Figures 9799). Hanking ventral surface of hinge, atong 1/t of hinge lengtli: located just posterior to teeth. Left and right edges straight, turned upwards and medially, comected with valves by dark-brown ligament inside imbonal cavity choser to hinge immer edge (Figures 100-102) Outer
surface convex, covering dorsal-middle, inter-umbonal region of visceral mass (Figure 75). Anterior and posterior edges concave; anterior edge slightly deeper and with tenuous slope. Both edges covered ly opaque, yellowish periostracum (Figures 96, 101, 102). Lithodesma thickness equivalent to that of shell.

Major Muscles (Figures 72-75, 77, 78, 80, 91, 92): Both adductor muscles similar in size and position (Figures 72-75), near valve edges; insertion size equivalent to 1/20 of valves inner surface each; approximately two times taller than wide; outer length about half of inner length, with insertion in valves greatly oblique (Figures 75, 91, 92). Anterior alductor muscle with anterior region about 3 times narrower than posterior region, divided transversally (dorsoventral) in two similar halves (quick and slow components). Posterior adductor muscle similar to, but inverted arrangement in comparison to anterior adductor muscle; components different, however, one of them horseshoe-shaped, occupying ventral and posterior sides (Figure 77); another component filling intemal region of muscle, only exposed in posterior and dorsal siles (Figure Ti). Pair of anterior foot retractor muscles long and narrow (Figure 80); originating just dorsal to anterior adductor muscle in area equivalent to 1/10 of adductor (Figures 75. 80); rumning ventrally and posteriorly; spreading after insertion in anterior and lateral regions of foot base. Pair of posterior foot retractor muscles similar to anterior pair, but about half narrower (Figures 75, 78, S0); originating just dorsal to posterior adductor muscle in area equivalent to $1 / 20$ of that adductor; ruming ventral and anteriorly; inserting in posterior and lateral regions of foot base. Pair of palp muscles. septal and pallial muscles described helow. Pair of foot protractor muscles absent.

Foot and Byssus (Figures 73, 74, 50): Foot conical, pointed: estimated volume equivalent to $1 / 6$ of that of chamber of valves; base located in middle region of ventral surface of visceral sac. Byssal furrow shallow and very narrow, length about half of that of foot, offset ventrally and distally, lying along posterior surface and midline, ending at short distance from foot apex. Byssus found in a single specimen, brown, with single filament, narrow; proximal end attached to distal region of byssal furrow.

Mastle (Figures 72-74): Dorsal fusion of mantle lobes about $1 / 3$ of their edges, along entire hinge length and about $1 / 6$ of valves height toward ventral, in both sides. Edges of mantle lobes with two folds. Inner fold fused between two lobes along entire posterior half (except for siphonal apertures) (Figure 74). Both lobes free from each other along anterior half, up to dorsal level of auterior adductor muscle; in this region both folds are of similar size, with height equivalent to $1 / 25$ of valves height. Mantle edges thick, muscular, insertion relatively thick in pallial line (Figure 72, pmi). Pallial muscles originating in pallial line in location abome $1 / 3$ from ventro-dorsal distance; no etcar pallial simus. Incurrent siphon as aperture of a septum formed by fusion of inmer mantle codge folds: aperture about $1 / 5$ of posterion fused region of mantle.

Figures 48-63. Spinosipella species. Shells. 48-54, 56-59. S. deshayesiana, adult specimens. 48-53. MNIIN (Sta. CP1475, Fiji); 12.5 mm . 48. Left valse, outer view. 49. Right valve, onter view, 50. Left valse, imer view. 51 . Right valve, inner views. 52. Posterior siew. 53. Anterior view. 54. Dorsal view, HGLC, From Philippines; $11.5 \mathrm{~mm} .55 . S$ agnes paratype, BMNH. $18.2 \mathrm{~mm} .56-59$. Syntypes of S. deshayesiama MNHN. 56. Outer view, specimen 1, left valve. 57. Onter view, specimen 2 (possibly figured by Fischer,
 60. Outer view left valve. 61. Outer view, right valve. 62. Inmer siew, left valve 63. Imer tiew, right valve; 17 mm .

Figures 64-71. Spinosipella species. Shells, 64-65. S. costeminens Holotype MNHN. 64. Right valve, anterior view. 65. Left valve, anterior view, 17.0 mm . 66-67. S. cricia Holotype AMS, right valve, 66. Outer view, 67. huner view; 5.8 mm . 6S-71. S costeminens lacking projections on ribs, ANItN (Sta. CP 992, Vanuatu), right vake. 6S. Outer-right view. 69. Anterior view. 70. Posterior view. 71. Inner view; 29.0 mm .
longer dorso-ventrally (Figure 76); walls thick, muscular; outer surface flanked by 9 tentacles surroming siphonal aperture; all tentacles of similar size, turned inwards. somewhat conical, tip blunt and romided, length equivalent to that of siphonal aperture; single momaired tentacle located ventrally; five secondary smaller tentacles located externally, midway hetween siphonal aperture and montle edge, of similar size, about $1 / 3$ of size of major tentacles, well separated from each other, one of them located in ventral region of siphonal aperture, other four located laterally, in ventral half of siphon (Figure 76). hemerent siphon a small pore located in small elevation, approximately midway between excurrent siphon and binge, a pair of small tentacles similar to secondary tentacles of incmurent siphons, lecated laterally, in dorsal region of siphon base (Figures 74, 76, T7). Radial mantle gland present along mantle edgrs souter fold (Figures 73, 92, mg), occupying alout half of onter fold volune, situated closer to inner surface of this Cold.

Pallam Caity (Fucures 73-75, 94, 95): Ocempring abont 70% of volme of valves. Transversal, horizontal septum located approximately midway in animal, i.e., su-pra- and inlra-septal chambers ol equivalent length (Figine T2). Paired palps low, wide, hiledeed folds (Figures 73. $51,95, \mathrm{pp}$) that occupy anterion third of dorsal sir-
face of infra-septal chamber, permanently open as a funnel. Pair of palp muscles (Figires 72, 74, 79, lm) located laterally; originating in anterior region of umbonal eavity, in a distance from origin of anterior foot retractor equivalent to $1 / 3$ of anterior adductor muscle height: located in same horizontal level of origin of anterior foot retractor; size equivalent to $1 / 4$ of that of anterior foot retractor; moming ventrally attached to mantle for a distance equivalent to $1 / 6$ of value lieight; spreading after insertion in lateral region between imer and outer hemipalps. Palp muscles also comect anterior end of septum. Septum witl two constituents: extemal one produced by a fold of mantle (allont $2 / 3$ of septun areal); internal produced loy gill (Figures 73, 95). External septum element thick, muscular; posterior museles originating as a pair, just dersal to posterior adductor musele (Figure 7T, ms): numing imatrally immersed in mantle, at some distance from cach other (erpivalent to half of their width) and fronn midline, gradually becoming wider and tricker, in anterior surromuling posterior surfate of posterior addinctor muscle and lateral edges of excurrent siphom: some secondary muscular hurdes originating from centroposterior region of posterior adductor muscle miting with main, vertical bundles (Fignre 77); muscles spreading within septum in region between inenrent and ex-

Figures 72-75. Spinosipella deshayesiana. Anatomy. 72. Whole specimen just extracted from shell, right view: 73. Same, right mantle lobe in its infra-septal region removed. right-slightly ventral tiew, left shell valve also shown. 74. Same, right mantle lohe almost completely removed. right portion of septum also removed. 75. whole specimen. dorsal-slightly right view, most of mantle and dorsal intequment artificially shown as transparent, lithodesma It shown in its in situ topology. Scale bars $=2 \mathrm{~mm}$.

Fignres 76-79. Spimesipelln dishayesimm. Anatomy. 76. Detail of region of siphons, posterior-slightly right view: 77. Peri-anal chamber, right view, adjacent region of right mantle lohe sectionch and deflected to show inner surface and museles, inferior region or right mantle lobe removed along median line. 78. Reno-pericardial region and adjacent stmetures, right siew, right wail of pericarlimu rennoverl. 79. Whole right vien, showing topology of genital system, reno-proficardial structures. palps, main gangha and mascles, most stmetures artificially shown as transparent. Scale bars $=2$ mur

Figures S0-S2. Spinosipella deshayesiana. Anatumy. SO. Whole right view, emphasizing digestive structures, main musculature and main nervons ganglia; topology of some adjacent structures also shown, everything else represented by transparency: S1. Same, anterior region of digestive structures opened lomgitudinally, some objects inside stomach preserved, topology ol some atjacent structures also shown. $\mathbf{\$ 2}$. Visceral ganglia (left), ventral view, and pedal ginglia (right), postero-dorsal vew. Scale hars $=1 \mathrm{~mm}$.
current siphons. Outer component of septal muscles inserted in shell just ventral to posterior adductor mascle (Figure 7 -2. sm), in area equivalent to $1 / 10$ of that of adductor muscle insertion. Internal element of septum constituted by gills. Gill with both demibranchs narrow, of similar size. Ilattened, in same plane of remaining septum; both gills surrounding posterior and lateral regions of foot base (Figures 73, 75, 95). Gill attached to remaining septum sia tissue; gill attachment to foot ly cilia. Connection between gill filaments of 6-7 longitndinal. equidistant bridges of similar width ol filaments. Papilla situated in posterior region of roof of supraseptal chamber (Figures 78-S0, 94, pi). positioned just ventral to sisceral ganglia, internally solid; length ahout $1 / 20$ of posterior adductor muscle length and about $1 / 3$ of it in width; tip broadly pointed, normally tumed to anterior.

Visceral Mass (Figures 72, 75. 79): Strongly bilobed, as internal mould of well-separated umbos (Fignres i2, i5). Most dorsal structures, just inside valve apeves, formed by sponge-like connective tissue. Pair of ovaries cream in color, occupying central and dorsal regions surrounding stomach and digestive diverticula, reaching dorsal areas up to dorsal sponge-like connective when fully developed. Testes brown, consistence liarder, located rentrally and laterally, totally separated from ovaries: anterior region irregularly digitiform (Figures 75.

79 , ts). Digestive diverticula situated compressed between stomach and gonads, color greenish-beige; occupying about $1 / 5$ of visceral volmme. Stomach and intestine lying in central region, occupying about $1 / 4$ of visceral volume (Figures S0). Reno-pericardial structures located just anterior to posterior adductor muscle and posterior foot retractor muscles, with volume approximately $1 / 6$ of visceral volume (Figures 75, 79).

Circulatory ind Excretory Systems (Figures ion, 78): Pericardinm located at shont distance anterior to posterior adductor muscle; with about half of renopericardial volume, and witl a pair of expansions toward anterior, surrounding roof of pallial cavity where lies pair of auricles. Auricles comecting to anterior end of gills, in short isolated ctenidial vein (Figire 75. (v); abruptly curving towards posterior and dorsal; after this curce, auricles increasing gradually, suromoding obliquely periphery of visceral mass in roof of pallial catity (Figures $72,75)$ walls thin, translucent; close to mitline amiclen abmptly narrowing and comecting to ventricle (Figures 75,78) posterior region relatively lobed. Ventricle located in center of pericardium. surrounding intestine: relatively narrow: Kidney mostly solid, color dark purplealmost black; most ol renal gland located just anterior to posterior adductor muscle, ventral to pericardiun (Figures 75 , ki); a pair of lolds originating from this region.
rumning long roof of pallial, supraseptal cavity, just rentral and extermal to auricles (Figures $\bar{i} 4, r$), this pair of folds with about $1 / 5$ of supraseptal chamber height, numning posterionty in middle region of roof of this chamber, gradiadly approaching risceral mass towards anterior, frsing to sisceral mass after ruming about $1 / 6$ of chamber length (Figure 74). Pair of nephropores as small slits located in posterior region of supraseptal chamber, corered by posterior end of remal fold, just dorsal to pair of posterior retractor museles of foot (Figure 74, ne).

Digestive Systen (Figures So, SI): Palps partiadly described above (pallial cavity), widely fused as pair of folds along midline (Figures 95. pp). Mouth central (Figure $95, \mathrm{mo}$), with sphincter relatively well developed. Esophagus with about $1 / 5$ of sisceral mass length, not attached to anterior adductor muscle, width about $1 / 3$ of that of anterior adductor muscles; wall relatively thick, muscular; imer surface with about 20 longitudinal, narrow, low folds as contimation from those of palps (Figure $\$ 1$). Stomach main chamber with about $1 / 4$ of tisceral mass volume. elliptical, anteroposteriorly longer; walls thick, muscular (Figure 91, st). Gastric imner surface smooth; two pairs of ducts to digestive diverticula present, each one located in sentro-lateral region just posterior to esophageal insertion. Stomach nomally containing 3-4 isopod erustaceans (Figure SI, (T). Stjle sac with about $1 / 3$ of gastric main chamber volume, located in middle of gastric rentral wall, somewhat elliptical (longer dorso-ventrally): erystalline style occupying entire style sac (Figure 81, sy); imner surface of strle sac smooth, lacking ans fold separating it from intestine; gastric shield lacking. Intestine a single sigmoid loop with about half of style sac width. Imner surface simple, smooth, Intestinal portion crossing through pericardium in somewhat anteroposterior direction. Rectum attached to dorsat and posterior surlace of posterior adductor muscle. with about $2 / 3$ of remaining intestinal width. Anus simple, sessile, located in rentral third of posterior surlace of posterior adductor muscle (Figure 7-).

Gevital Systen (Partially described abowe under VisCeral dass): Pair of testes and oraries converging to a single common, short duct, of about $1 / 15$ of visceral mass length. Genital pores small slits located at slort distance from nephropores (Figures it, is, 94, gal).

Cemtral Nervous Systey (Figlefs So. S2): Cereloral ganglia somewhat triangular, each ganglion with rolume equivalent to $1 / 15$ of that of anterior adductor muscle: anterior end narrow, possessing thick pair of nerves munning to pallial region dorsal to palps: pair of ventral nerves also thick, originated in middle region of ganglia, rmming ventrally to palps; Posterior end originating cerelmo-visceral comective (Figures SO. 106): cerehral commissurr length about $1 / 3$ of peosterior surlace of anterior adductor muscle. Pair of cerebro-visceral commissures relatively thick, monning thonglı siscural mass betweers stomath and testes. Pair of peelal gamalia loseated in ventral third of anterior pair of pedal retractor museles. torehing these immeles botli totall fused with
each other along midline, almost forming a sphere, volume of both equivalent to that of each cerebral ganglion: pedal nerves and cerebropedal comnectives originating subteminally in posterior surface of ganglia. Pair of visceral ganglia toeated anterior to ventral surface of posterior adductor muscle; both also totally fused with each other along median line, being somewhat squared in sentral view: size equivalent to that of peclal pair of ganglia: cerebrovisceral comectives and siphonal nerves located in vertices.

Measurements (respectively length, height, width, in mm): IlGLC: 11.5 by 12.2 by I2.0; MNHN (Sta. DUTI): 15.7 by IT.7 be 9.2 (valve); MNIIN (Sta, CPSS9): 19.7 by 17.0 by 9.1 (valve).

Geographic Distribution: South and Central IndoPacific in 146-505 m depth.
Material Examined: Paratypes of S. ericia: AUSTRALIA: South Cape Wiles, $174-153 \mathrm{~m}, 35^{\circ} 39^{\prime} \mathrm{S}, ~ 136^{\circ} 40^{\prime} \mathrm{E}$, AXIS 03206S, 1 left, I right valves (Zoological Results of the F.I.S. Endentour, 25 Aug. I909).

Other Material Examined: Holotipe of S.japonica: JAPAN. ANSP 49639. I shell. MNIN. SII PACIFIC. Loyaute Istands, 16 lots [122 1]. TONGA IS. I2 lots [59 v]. GUAM. Marianas Islands, 3 lots [15 1]. AUSTRALIA. South Cape Wiles, 1 lot [6r r$]$. NEW CALEDONLA. South, 3 lots [7 sperimens]; Banc Esponge, 2 lots [3 specimens]: Chesterfield Plate:u. I specimen. PHILIPPINES. Aliguri 1s. 2 lots [I specimen and 3 r]; Bohol Sea, Off Balicasag Island, I lot [1 r$]$. FIJI. I specimen.
 nel, I $\operatorname{lot}[4 \mathrm{v}]$; N.W. of Tavoy I., I lot [1I v]. ANDAAIANS SEA. I lot [IM. THAILAND. Phuket I., I lot [II $v]$: Andaman Sea, I lot [lla (Details in Simone and Cunha, in press.)

Spinosipella costominons (Poutiers, 1981)
(Figures 60-65, 65-71, S3-92, 103-10S)
Terticordia (Spinosipella) costeminens Pontiers, 1981: 351 (pl. 4. figs 1-4. text fig j)

Spinosipella costeminches.-Pontiors and Bemard, 1995: 110, 143. 15s (figs. 1-2)

Diagnosis: Shell with 16-IT tall radial ribs, those more posterior to middle surface sery taller, normally possessing lodade-like projections along tip: 3-1 more posterion abmptly lower, preceded by a very tall, camalike ril).

Description: Shela: Up to 30 mm . Color white. Degree ol consexity (midtli/length) in each valve approximatels 0.50 . Onter surface prickly, with somewhat chaotic organization Figures 60, 61, 68-70). Sculptured by strong, uniform, arehed, radial ribs, from 16 to 17 in each valve (Figures 60, 61) ; vibs increasing from region antefios to umbo to reston hetween midelle ant posterios thirds, last mils in this reqion taller and more separated frem cath othor last one on a weak carina (Figure 70); langer ribs nomall! possessing bate-like projection

Figures S3-S6. Spinosipedla costeminens. Anatomy: \$3. Whole specimen with right valve extracted, right siens. St. Specimen extracted from shell. posterior view, showing siphonal areat \$5. Whole right view, some portions of right mathtle lobe extracted. particularly regions ventral to septum, and rentral and dorsal to renal fold (\mathbf{f}) to expose imner surface: cerehral ganglion (ce) seen by transparency: $\mathbf{S 6}$. Same, ventral-slightly right view. Scale har $=5 \mathrm{~mm}$.
along tip: posterior third as a slope, having 3 I ribs similar to those of anterior region; Dade like projection absent in some specimens (Figures 65-71). Posterior edge about twice broader than anterior edge. Between umbos and anterior edge a concavity hearing transversal rils similar to ribs of remaining region (Figures 64, (6in): pre-
umbonal region narrow, smooth about 10% of shell length (Figures 64, 65, 69), Anterior. ventral. and posterior edges forming zigzag (Figures 62, 63, 71, 103), with tips longer and narrower projected in those middle and larger ribs. Hinge with a large cardinal tooth in right valve, stuble tall (alloust 10% of valve width), hroadly

Figures $87-90$. Spinusipella costeminens. Anatomy. 87. Whole right view, mainly showing digestive tubes and main ganglia, topology of some structures also shown. Scale bar $=5 \mathrm{~mm} . \mathbf{\$ 8}$. Scheme of layers of tissue in indicated region of stomach. Scale bar $=0.5 \mathrm{~mm} . \mathbf{8 9}$. Fore- and midgut opened longitudinally for exposing inner surface (same scale of Figure Si). 90. Foot, ventral-slightly posterior siew, sectioned transversally in two levels to show inner layer of tissues. Scale 1 rar $=1 \mathrm{~mm}$.
pointed, somewhat flat (Figures 63, 71, 103); correspondent socket in left value shallow, restrict to dorsal surface; this socket flanked by small posterior tooth, with insertion ol anterior valve edge approximately in middle region of this tooth (Figure 62), anterior tooth absent (Figure 62).

Additional details for this species see Poutiers (1981), Poutiers and Bemard (1995).

Lithodesma (Figures 103-105): Characters similar to those in preceding species, differing in being propor-
tionally shorter and wider (Figures $104-105$). Length about $1 / 5$ to $1 / 6$ ol hinge length, and about 1.5 times wider and long.

Main Muscle System (Figures S3-S7): Characters similar to those in preceding species. Anterior adductor muscle about 20% dorso-ventrally longer (Figures 83,55).

Foot and Byssus (Figures S5, S4, 90, 107): Shape and disposition similar to those in S. deshayesiana. Byssal ghand relatively deep, ruming immersed in ventral region of pedal musculature at about half of byssal furrow

Figures 91-10s. Spinusipella species. Anatomy. 91. S costeminons, middle honizontal, longitudinal section through risceral mass at same level as pericardium (ANH N sta. $\mathrm{CI}^{2} 67$, Mallory, $5 \mu \mathrm{~m}$). Scale bar $=2 \mathrm{~mm} .92$. Same, detail of posterior region of mantle border. Scale bar = $1 \mathrm{~mm} .93-\mathbf{1 0 2}$. S. deshayesiana. 93. Detail of hinge region of left vake with lithodesma (lt) still attached, right view. Scale bar $=2 \mathrm{~mm}$. 94. Detail of posterior region of supraseptal chamber, riglat view, right matle lobe removed (MNH N sta. 1DW1 499) Scale bar = Imm. 95. Infraseptal chamber roof, ventral siew, right mantle lobe removed (MNHN sta. CP767). Scale bar $=2 \mathrm{~mm} .9(6-99$. Lithodesma (MN 11 N sta. DW739) Scale bar $=1 \mathrm{~mm}$. 96. Ventral view. 97. Dorsal view. 98. Posterior-slightly dorsal vew. 99. P'usterior view. 100. Sane specimen, ompty sholl, ventral view, valves slightly upen, lithodesma still in situ. Scale bar = 2 1mm. 101. Same, detail of hinge and lithodesma. 102. Same, ventral-slightly anterior view, 103-10S. S. costeminens. I03. Shell, yomtral niew, valves open, lithodesma still attached to left valve (IN IIN sta. CPI 460). Scale bar $=2 \mathrm{~mm}$. 104-105. Lithodesmal, same lot (other spocimen), dorsal and ventral views respectively. Scale har $=1 \mathrm{~mm}$. IOG. Detail of anterior region, right view, iutegument
 mantle lobe removed (ANHN Cl- 767). Scale bar $=1 \mathrm{~mm}$. 10s. Detail of posterior (siphonal) recgion, posterior view (MNHN (D'1460) Scale lar $=2 \mathrm{~mm}$.

length towards corsid (Figure go, by). Thick muscolar layer surrounding a moleus of conective tissue (Figure $\left.90, c_{j}\right)$.

Mantle (Ficures 84-86, 92, 108): Characters similar to those in preceding species, with folloning distinctive characters. Pair of secondary tentacles positioned between incurrent and excurrent siphons (Figures St, 108); remaining tentades similar in size and position. Ventral pair of tentacles of incurrent siphon generally symmetrical. Zigzag formed by mantle edge having secondary folds positioned in more distal tips possibly elated to taller radial shell ribs (Figure IOS). Radial mantle gland (Figure 92) similar to S. deshayesiana.

Pallial Cabity (Figures 85-S6, 107): Characters similar to those in preceding species, except for wider platform between posterior region of gills as part of septinn (Figure 107).

Visceral Mass (Figures 85-87): Characters similar to those in preceding species, dillering mainly by wider region separating pair of renal folds in supraseptal chamher (Figure 85).

Circulitory and Excretory Systems (Figures 85 , 91): Pericardimm and heart with dratacters similar to those in S. deshayesiana (Figure 91). Kidness of similat features, differing manly by enlargement of pair of remal folds (Figures 85-86, rf), taller and wider, almost dividing supraseptal chamher in two-intemal and extemadlalves. Height of renal fold about 50% of that of supraseptal chamber lueight. In addition to an enlargement, hoth remal folds still have posterion end in more anterior position and wider separation hetween folds and visceral mass (Figure S5).

Digestine Sistea (Figubes St-89): Characters similar to those in preceding species. Esophatgos witlo about $1 / 3$ of visceral mass length, rimming horizontally, perpendicular to posterior surface of anterion aldactor" muscle (Figure $5 \overline{7}$, es). Stomath main chamber with longer region as a blind-sac projected posteriorly, Gastric wall constituted by extemal laver of weak commective tissue
(Figure $88,(\mathrm{j})$, two thick muscular lavers of similar size, with outer laver of longitudinal mosele and imer layer of circular muscle (Figure SS, lo and cm). Imer surface of stomadı ($\mathbf{F i g u r e} 89$) with posterior end of esophageal folds elearly more evident that together form a llat fold. Another ventral fold surrounding apertures to digestive diverticula. Castric style narrower (about $1 / 6$ of gastric widtlı); intemadly a pair of tall folds separating intestinal from style sac components (Figure 8S, ss, in).

Genital Systen: Characters similar to those in preceding species. Separated masculine and feminine components of gonad shown throngh histological sections in Figures 9I(ts, ov).

Central Nervous Systed (Figures 57, 106): Three ganglia witl similar localization and size to those of preceding species.
Measurements (respectively length, height, width in mmm): MN1IN (Sta. 1361): 22.0 by 2.5 .1 by 12.5 (ralve); MNHN (Sta. CC996): 20.0 by 24.3 by 14.3 (ralve); MNHN (Sta. CP992): 19.6 by 23.3 by 12.6 (value).
Geognapulhic Distribution: Tropical West Pacilic.
Depth Range: $750-925 \mathrm{~m}$.
Material Examined: Holotype; Additional material (NNHN): SUY PACIFIC. 4 lots [32 v, ll specimems]; Wallis 1s, 6 lots [15 v]; Banc Combe, 5 Lots [28 r]; Fortuna Is, 5 lots [1Sv]; Banc Watenvitch, 2 lots [3v]; Banc Tuscarora, 29 lots $[63 \mathrm{v}]$: South Vamuatu - Monts Gemini, 4 lots [4 r, l specimen]; TONGA IS. 8 lots [52 v]; Ena Is. 6 lots [I2v]: Seamomint, 6 lots [29 a r]; Sonth of Nomuka group, I lot [25 v]; Ha'apai Group, 2 lots [4v]; N Háapai group, 3 lots [6 v]; NIV Tongatapu, 3 lots [16 v]: SW Tongatapu, 5 lots [22 v]: Tongatapu, 6 lots [8 v]; S. Nomula group, 2 lots [6 r]; Vava group, 1 lot [2v]; NEIS CALEDONIA. 5 lots [$5 \mathrm{v}, 5$ specimens]: Lord Howe, 1 lot [1 v$]$: Banc Nova, 2 lot [S v, 1 specimen]; North New Caledomia, 10 lots [tota 20 r]; South New

Figure 109. Coographic distrilntion of Spmasipeller epp.

Calectonial, 13 lots [46 r , I specimen]: off Norfolk, 18 lots [95 י]: Banc Esponge 11 lots [1+4 i]: Banc Kaimon-
 Jumeau-W"est. 4 lots [17r]: Banc Introusable, 7 lots [16 i]: Bance Stylaster,] lot [1 -]: Voleaus Hunter and Mat thew, 2 lots [2 י]; S.E. New Calechoniat, 2 lots [21]; East New Caldedonia, 6 lots [30 V$]$ Banc Capel, I lot [lota 12 1]; Banc Kelso, $]$ lot [6 v]; I. Lovante, 22 lots [44 r]. Fl]I South of Viti Lerm. 42 lots $[32.51]$: Sontheast of Viti Leev, 17 lots [57 r]: Bohol/Sum Seas, 2 lots [5 l]; Bohol Sea - Balicasag Island, 3 lots [5 v]; Bordan, 1 specimen; TXIVAN. Bashi chamel. 2 lots [31]: Someth Chima Sea,
 and Cumla, in press.)

DISCUSSION

The Cexls Smiostpella Wituin the \erticordidie. Despite their larger size, the prickly outer surface of the shell. and the reduction of the hanule, which differentiates Spinosipella from the remaining verticordiods, this taxon has traditionally been considered a subgenns of the genus Terticordia. This set of characters is sulficient in mat opinion to allocate Spinosipella as a separate genns. This siew was previonsly defended loy the author of the genus (Iredale, 1930) and by Poutiers and Bemard (1995). Other distinctive characters are the spiral umbones (Figures 5. 7, 21. 22, 33, 54, 53), the tall, someWhat uniform radial sculpture triangular in section; and the obesity of the valves. The spiral umbones and the obesity of Spinosipella are quite similar to those in the fossil gemus Pecchiotia Sati and Meneghini in Murchison, 1550 [type-species (by monotypy): Pecchiolia argentea Sari and Meneghini in Murchison, 1850 ($=$ Chama arictina Brocehi. 1S14) middle Tertiary: Europe] (Keen. 1969: 55%), from which Spinosipella differs in having well-developed ribs and zigzag edges.

The full genus status of Spinosipella is lased on the differences with the typical Verficordio sensu stricto Itype species (by monotypy) Terticordia cardiiformis Sowerby, 1 444 , such ass the higher size and obesity of the valses: the additional development of the prickly surface (which also covers the radial ribs, whereas in Teiticordia, when a prickly surface is present, it does not cover the
ratial ribs), the absence of hunle; the spiral fashion of both valves: and the similanty among the radial rilos (representatives of Verticordia usinally have an unusually larger rib or space between ribs). The same set of characters also dilferentiates Spinosipella from Trigomulina dOorbigny; 1842 [type species (by monotypy) T. ormata dOrbigny, 1St2] in the sonse of Jung (1996: 46-47).

Representatives of Spinosipella also resemble those of the gemera IIaliris Datl, 18S6, and Enciroa Dall. 18S1, by their larger size, comexity, and prickly shell surface. Spiuosipilla differs from those two genera, however, in the higher degree of convesity, rellected in more obese shells in its species; in the mond more developed and taller radial ribs; bigher degree of spiralization of the valves; and in the expansion of the ribs bevond the shell margin.

Further analysis on the verticordiid systematics and phylogeny cum be fomend in the literature (e.g., Pelseneer, 1SSS; Salini-Plawén and Haszprmar, 1982: Bieler and Mikkeken, 1992).

COMIPARISON BETHEEN THE SPINOSIPELLA SPECIES

The dilferentiation between the five species of Spimosipella is summarized in the respective diagnoses and in Table 1 . The degree of differentiation in the samples of each species examined allows for specific separations. The number of radial ribs is the most notable feature: despite certan a small anount of intraspecific variation, the number of radial ribs is somewhat constant in each species, at least in specimens of larger size. The fossil S. acutionstata is the species with fewest ribs. 12-1.3 (Figures 36, 35, 39), while S. deshayesiana has the largest number of ribs. 16-19 (Figures 46, 45, 49, 54, 53). The other species possess an intermediary number of ribs. The specios of Spimosipe lla msually have radial milss of relatively uniform size; the single exception is S. costemincus, which has ribs clearly increasing posteriorly; in the posterior shell slope, however, the ribs abruptly reduce in size, although in some specimens, particularly in the young ones, this character is not so clear, i.e., the ribs are somewhat uniform-sized. The shell inllation is well developed in most Spinosipclla species, but this is clearer in

Table 1. Comparison of characters between the five studied species of Spinosiplla.

Character	Spinosipella acuticostata	Spinosipulla agues	Spinnsipella tinga	Spinesipella deshuyesiana	Spimosipelln costeminris
Distribution	Mediterranean	Tropical IV. Atlantic; Caribbean; to SE Brazil	S-SE Brazil	Sonth and Central Indo-Pacific	Tropical West Pacific
Shell Inflated	Strongly	Higlily	Weakly	Strongly	Highly
Sculptured between radial ribs	Radial	Disorganized	Radial	Radial	Disorgmized
Pricklv rilbs outer sufface	Rongh	Rough	Weakly prickly	Strongh prickly	fiongh
Snmber of Ribs	12-13	15-17	17-15	15-19	16-17
Size mm	20.0	20.2	10.4	11.5	20.0

the larger specimens; while the young specimens are considerally flatter (Figures 41-45). The prickly outer shell surface is an outstanding character of the Spinosipella species; howerer, this character is conservative among the five species; the single exception is the retatively chaotic arrangement in S. agnes (Figure S) and S. costeminens, while in the remaining species a radial arrangement is apparent (parallel to the radial ribs) (Figure 32). The Pacific species S. deshayesiano has much larger, crispy prickles along the tip of the ribs (Figures 42, 45, 46, 48, 49). This is lacking in the remaining species, except in some very young specimens (e.g., USTM SIOS59, S. agnes, 6 mm), where the prickles, however, are not fully developed. The prickly surface is strongly damaged in eroded specimens (Figure 55), becoming almost completely smooth. Spinasipella deshayesiana, perhaps because of this charracter, has the distad tips of the zigzag edges of the shell even longer and more projected (Figures 41, 44, 47,50,51, 59, 67). The series of radial ribs is intempted in the region between the unbos, where a triangular smooth area appears. This area is particularly large in S. agnes (Figures 7, 9), but is practically absent in S. tinga (Figures 21, 22); it is narrow in the remaining three species. The size of the specimens appears to be another distinctive leature, as S. ting a is small (around 10 mm), whereas the remaining species are larger ($20-30 \mathrm{~mm}$). The hinge does not vary much between the Spinosipella species; however, some particularities exist. The posterior tootho of the left valve is well developed in S. agnes [Figures 4, 10, 12, 27, 25 (arrow)], very low in S. acuticostata (Figures 35, 39), and practically absent in remaining species (Figures 20), 25, 50). The tall and pointed cardinal tooth of the right valve is more developed in S. agnes, in such it is also shamply pointed and curved (Figures 3, 10, I2). In the remaining species this tooth is weakly shorter and more romended (Figures 26, 34, 47, 51).

The geographic and stratigraphic distribution are somewhat mutnally exclusive for most of the species (Fig. 12); Spinosipella acuticostata is the only Mediterranean species, S. agnes occurs from Florida to Rio de Janeiro, S. tinged is found from Rio de Janeirs to Rio Crande do Sul, along the Brazilian coast. The fineresolution distribution of the Indo-Pacific species is still muclear, but S. deshayesiana and S. costemincos, appear to be sympatric. Spinosipella acuticostata is a fossil species, ocourving in Plincene strata, while the remaining species are lound in the Recent. Apparently no Recent Spinosipella occur in the Nediterranean.

All samples of Spinosiperla from the Atlantic and Neditemanean have previously been accepted as belonging to the single species S. achtimenstata (e.e. Ablontt, 1974 : Ahbott and Dance. 1953: Rioss, 199.t). Howerer. analyses of the conchological, gongraphic, and stratigraphic differences. show that the separation into three species is warranted. As the shape changes considerably during ontogemy, a specimen of S. agnes at same size as the holotype of S. tinga was chosen to show the diffire-
ences between those species. Figures 2S-31 illustrate these differences. Spinosipella agnes has fewer, taller, and more widely spaced riths than S. tinga (Figures 19, 29). The shape of the shell edge is much more uniform in S. tinga than in S. agnes, in that the tips of the ribs are more expanded, extending longer beyond the shell margin (Figures 20, 24, 28). The posterior cardinal tooth in the hinge of the left valve is present in S. agnes, in animads larger than $5-6 \mathrm{~mm}$, while this tooth is never present in S. tinga (Figures 20, 25, 27-2S, arrow). The degree of convexity is ligher in S. agnes and in S. tinga (Fignres 30, 31); S agnes has a degree of convexity (width/length) in each valve of about 0.57 . while S. tinga it is 0.47 .

The comparison of the previonsly valid species Spinosipella cricia, including paratypes (Figures $41-44$), and S. deshayesiana, does not reveal any distinction between them. Nomally, specimens of smaller size were identified as S, ericia, and the large ones as S. deshayesiana. But examination of shell features along a growth series show a complete gradient linking the two taxa. The same lack of distinction is found in the literature for both species, ineluding the original descriptions. For these reasons, despite the fact that S. cricia is the type species of the genus, the odder name S. deshayesiana should be used. Furthermore, a type specimen of S. japonica was also examined (Figure 45), confirming the synonymy of thís species with S deshayesiana.

The distinction between the Pacific species Spinosipella deshayesiana and S. costeminens is not always easy. With the large quantity of specimens kindly provided loy the MNHIN (Pais), it was possible to analyze the degree of variation of both species. Spinosipella costeminens mostly has samples with shell possessing the outstandingly large, carina-like spiral ridge between the middle and posterior thirds of the shell, but sometimes this ridge is not so different from the others, and the animal become more romded, similar to S. deshayesiana. The distiuction is based mainly on the presence of at least a weak carina in the region between middle and posterior thirds, and also by the more robust ridges of S. costeminens specimens (Figures 60, 61), while those of S. deshayesiana lack any clear radiad carina and the ridges are more delicate, unifonn and apparently cose from each other (Figures 46, 4S).

The lot USNN 63200 includes 3 valves (2 left and 1 right), collected in Barbados, the known geograplic distribution of Spimosipella agnes. Howerer, the right valve has the characters of S. deshaypsiana, instead of those of S. agnes. In addition, is looks different in the state of conservation. color and associated sediment, from the other 2 valves of the same sample.

DISCUSSION ON ANATOMI

Vore in-deptla anatominial descriptions and discussions on verticordiids ane provided by Allon and Tumer
(1974), who studied 19 species of several genera. 11onever, no information on the anatome of the gemis Spimosipella is fonud in the likerature. Itthongh anatomical information is available here only for two of the five species of the gemus (of comerse one of them is a Plioceme fossil), some systematic inferences (an be made hased on the scemario, given in the literature the Verticordidae and related fanilies (Allen and Turner. 197t, und others. e.g. Fisher, 1860, 1562b: Pelseneer, 1s8s; Nakatima, 1967: Allen and Morgan, 1981). Besides the (onchological characters disenssed above, some inatomical features are possible restricted to Spinosipella, sueh as: the wide lithotesma (Figures 93, 96-10-t, It): the simplified siphomal tenkacles (Figure 10S), which normally have seconday papillae; the papilla on the roof of the excurent chamber (Figures $75-50,85,94:$ pi); the alsence of incurrent rake in infraseptal chamber. However, wide lithodesma have been reponted for Policordia lisbetae Kimdsen. 19.0 (fig. 90), which has sery different shell and palliad tentacular characters. The stady on the incmirent siphonal structures is of particular inportance in septibrancis. as the modified incment siphon is the main structure used in prey capture (Mlorton, 1957).
On the other hand, some features appear to be characteristic of Verticordiidae. such as: clongation of lateral region of kidnevs: the muscular stomadh (see also Purchon. 1956 . 1963); the separation between testis and ovary: By the proximity of the esophagus from anterior adductor muscle by the lack of incurrent valve, and be the simplified buccal strucheres, e.e., late of buccal can ity and tongue, it is possible to suggest that Spinosipella is a basal taxon inside Verticordiidac. Unfortunatels; no member of the genus was andzzed in the recent comparative studies on :momalodesmatans (Harper et al, $2006)$.

ICKNOULEDGNENTS

The authors are gratefil to the researchers who loaned the material for this study: Winstou Ponder and lan Loch (ADIS) for types of Spinosipella ericia; Néstor E. Ardilat MHNMC) and Emilio Garcia (ECC) for S. agnes (Colombia) and S. deshayesiana (Philippines); Hany G. Lee for S. agnes (Florida) (IIINAIC) for a large lot of S. agnes Colombia); and especially to Philippe Bouchet and Philippe Iaestrati, MNINN, for the lean of a huge quantity of lots coming from several places of the world. mostly from the Indo-P'acific. For thorongh comments and additional information about S. acuticustata we thank Rafael La Pema. For material of Haliris fisheriane we thank to Daniel Mansur Pimpao (PPG-BAN UFRGS . For help with SEAI procedures, we thank Lara Guimarāes (MZSP). For Rachel Collin, Sinithsonian 1nstitution at Panama, we thank for the help in the lext and language. The mank also both referees and the Editor for the thoughtful correction on the mamuscript. This project is supported by FAPESP Fundação de Amparo a Pesquisa do Estado de São Paulo), procs. no. 03/(0.586()-6.
(04/023333-8, and a "Treinamento Técnico 3" grant, under the siperyision of Antonia Cecília Z. Amaral and Luiz R.L. Simone.

LITERATURE CITED

Abbott, R. T. 197t. American Seashells, second edition. Van Nostrand Remhudd Company. New York, $66,3 \mathrm{pp} ., 24$ pls.
Abboth. R. T. and S. P. Dance. 19s43. Compendium of Seasluells. E.P. Dutum, twe. New York, 411 pp.
Alles J. A and R, E. Morgin. 195s. The functional morpholugy of Atlantic deep water species of the families Cuspidantidae and Poromyidae (Bisalia): an amalysis of the eroIntion of the septibranch condition. Pluilosophical Transactions of the Beval Society of London (B) 294 (1073): 413-546.
Allen. J A and J. F. Turner, 1984. On the functismal anatoms of the family Verticordiidae (Bivalvia) with descriptions of new spereies from the alyssal Atlantic. Philosophical Tramsations of the Reveal Societr of London (B) 26S(S94): 401-536.
Bieler, R. and P. M1. Nikkelsen. 1992. Preliminary phylogenetic amaksis of the bivalve family Caleommatidae Annerican Malacological Bulletin 9: 157-164.
Costa, O. G. 1850. Paleontulogia del Reguo di Napoli. Atti dellia Accademia Pontaniana 5: 395.
Crozier, M. A. 1966. New species and records of Mollusea from uff Three Kings Islands, New Zealinul. Transactions of the Rowal Society of New Zealand, Zonlogy S(5): 39-49.
Fiscluer, P. II. 1560. Note sur les gemes Ilippagus et Venticordia. Journal de Conchytiologie $S[(4)+4](3): 295-300$.
Fisher, P. H. 1862a. Description dinne espèce nomede de Verticorlia. foumad de Conchy liologie 10: 35-36, pl. 5.
Fiscluer. P. II. 1862h, Sur lanatomit des 1 Iimites, Journal de Conchyliologie 10 [(3)2] (3): 205-217, ph. 11 .
Harper. E. II, II. Drever and G. Steiner, 2HOG. Reconstructing thu Auomalodesmata (Nollusea: Bivalvia): morphology and molecoles. Zoological Jominal of the Limean Society 145:39.5-20.
Hedley, C. 1911. Reports on the Mollusca obtained by the F.IS. "Endeavour", chiefly olf Cape Wiles. South Australia. Part 1. Zoological Results of the Fishing Experiments Carried sut lw the F.1.S "Endeavour", 1909-10, 1: 90$11+$ pls. 17-2i).
Iredale T. 1930. Nore motes on the marine Mollisca of New Sonth Wales. Records of the Australian Musemu of Sydneey 17 (2): $381-407$.
Joug P. 1996, Deogene paleontulugy of the nurthem Domini(an Repullic. 17. The families Cuspidariidae and Vertiesrdiidac (Mollusca Bivalia). Bulletins of American Pale(mitology 110 (351): 35-75.
Keen. A. M. 1969. Superfanily Poromyatea Dall. 1586. In Monce. R. C. (ed.) Treatise on tivertehate Paleontology Part N. mol. Z. Volluseá 6 Bivalua. The Genlugicul Society of America and University of Kansas. Lantence, pp. $491-$ 952.

Kmudsen. I 1970. The systematics and biology of abyssal and haudal Bi a a via. Gadathea Repont 11: 1-2+1, 20 plis
Narini. A. C. 19740 Gênero Verticordia Wiesel. 1s.It (Bivalva. Verticordididie) na plataforma continental hrasileira. Papéis Avulsons de Zorlugia, Sā̀ Paulu 2S (1.3): 241-244
McLean f. II, and D Geiger, I99s, 11 species inventery, In: Beck, T., T. Metzger, and A. Freiwald. BIAS Biondicersity
inventorial atlas of macrobentic seamount animals. Friedrick-Alexander University: Nuremberg. 127 pp .
Merlano, J. M. D. and MI. P. Hegedus. 1994. Moluscos Del Caribe Colombiano: Un catálogo ilustrado. Fundación Natura, 291 pp., 74 pls.
Dicali. P and A. Villani. I991. Le specie malacologiche di Salice (Messina) Institute da Giuseppe Seguenza, Atti Iocademia Petoritana dei Pericolati, Classe I 67 (suppl. I): 345-363.
Norton. B. S. 1957. Siphom structure and prey capture as a guide to affinities in the abrssal septibranch Anomalodesmata (Bisalvia). Sarsia 72: 49-69.
Nakazima, M. 1967. Some observations on the soft parts of Halicardia nipponensis Ohatami. Venus 25: I47-155, pls. (5-9.
Nobre, A. I936, Moluscos marinhos de Portneal, Segundo volume. Companhia Editora do Minho. Barcelos, 3 is pp., pls. S1-s6.
Nobre. A. I93S. Fama malacológica de Portıgal I, Moluscos marinhos e das águas salobras. Porto, S06 ppo. St pls.
Pelseneer, P, 18ss. Report on the anatomy of the deep-sca Mollusca collected by H. M. S. Challenger in the vears I573-76. Report on the Scientific Results of the Voyage of II. II. S. Challenger during the years IS73-76. ... Zool(gy $27(2)[74]: 42$ plo, 4 pls.
Philippi. R. A. IS44. Enumeratio Molluscorum Siciliae cum tiventium tum in tellure tertiaria fossilium, quate in itinere suo observasit. Verlag Eduardi Anton. IIalle. 2. iv +303 pp., pls. I3-2s.
Poppe. G. T. and Y. Goto. 1993. European seashells, volume ${ }^{2}$. Verlag Chista Hemmen, Wiesbaden. 221 Pp .
Poutiers. J. MI. I9SI. Resultats des (ampagnes Mlusorstom. I Philippines (IS-2S mars 1976). Nollusques: Bivalves. Mémoires ORSTON 9I: 325-356.
Poutiers, J. M. and F. R. Bernard. 1995. Carnivorous bivalve mollusks (Anomalodesmata) from the tropical westem Pacific Occann, with a proposed classification and a catalogue
of Recent species. Résultats des Campagnes Musorstom, vol 14. Mémoires du Mnsénm national d'Histoire naturelle 167: 107-157.
Prezant, R. S. 1998. Superfamily V'erticordioidea, pp. 420-422. IN Beesley, P. L.; Ross, G. J. B. and Wells, A. [eds.]. Mollusca: the sontliem synthesis. Fanma of Australia Vol, 5. CSIRO Publishing, Mellomme. Part A, mi +563 pp .
Purchon R. D. 1956. The stomache in the Protobranchia and Septibranchia (Lamellibranchia). Proceedings of the Zoological Suciety of London I27: 5II-525
Purchon, R, D, 1963. Phylogenetic classification of the Bivalvia, with special reference to the Septibranchia. Proceedings of the Malacological Society of London 35(2-3): 7I-S0.
Rios, E. C. 1975 . Brazilian marine mollusks iconography Fundação Cidade do Rio Grande. Rio Grande, 331 pp., 91 pls.
Rios, E. C. 1985. Seashells of Brazil. Fundação Cidade do Rio Grande. Rio Grande. 325 pp.. 102 pls.
Rios, E. C. 1994. Seashells of Brazil. second edition. Fundação Universidade do Rio Grande. Rio Crande. 365 pp.. 113 pls.
Rosenberg, C. 2005, Malacolog version 4.0.1. Website http:// data, acnatisci,org/wasp. Philadelphia (accessed in Feb/ 2006)
Salas, C. I996. Marine bivalves from off the southem Iberian Peminsula collected by the Balgim and Fauna I expeditions. IIaliotis 25: 3:3-100.
Sakini-Plawén, L.x, and G. Hasfmmar. I952. On the affinities of Septibranchia (Bivalvia), The Veliger 25: S3-85.
Thiele. J. 1934 . Iandbuch der systematischen Weichtierkunde. Yol. 3. pp. T9-1022. Gustan Fischer Verlag. Jema now Stuttgant). Translation by Bieler, R, and P. Milkelsen. 1995. Itamdbosk of Systematic Malacology: Parts 3-4; pp. 1193-1690. Smithsonian Institution Libraries, Washington. DC.
van Aartsen. J. J. 1992. Emropeam manine Mollusca: notes on less well-known species, Lat Conchiglia 23 (264): 45-45.

